

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E / B. Tech (Full Time) END SEMESTER EXAMINATIONS – NOV / DEC 2024

V Semester
EE8501 & CONTROL SYSTEMS
(Regulation –2012)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

Q.No	Questions	Marks
1.	What are the advantages and disadvantages of block diagram representations?	2
2.	List the energy dissipating elements in mechanical and electrical systems.	2
3.	What is the nature of the response with different types of damping?	2
4.	How do you determine the point of intersection of the root locus with imaginary axis and the critical value of K?	2
5.	What is constant N circle?	2
6.	Calculate resonant peak and resonant frequency if $\zeta = 0.7$ and $\omega_n = 2$ rad/sec.	2
7.	Determine the stability of the system whose A matrix is $\begin{bmatrix} 1 & 4 \\ 5 & 1 \end{bmatrix}$	2
8.	State the observability theorem.	2
9.	List the advantages and disadvantages of P and D controller.	2
10.	Draw electrical lead compensator network.	2

PART- B (5 x 16 = 80 Marks)

Q.No	Questions	Marks
11.	Using block diagram reduction technique find the transfer function given below. Also check the answer with signal flow graph.	8+8
12.	a) i. A unity feedback control system has an open loop transfer function $G(s) = \frac{5}{s(s+9)}$. Find the rise time, percentage overshoot, peak time, and settling time for a unit step input.	8

	<p>ii The open loop transfer function of a closed loop system with unity feedback is</p> $G(s) = \frac{K}{(s+2)(s+1)(s+3)(s^2+6s+25)}$ <p>By applying the Routh criterion, discuss the stability of the closed loop system as a function of K. Determine the values of K which will cause sustained oscillations in the closed loop system. What are corresponding oscillation frequencies?</p>	8
	OR	
	<p>b) The open loop transfer function of a control system is given by</p> $G(s)H(s) = \frac{K(s+7)}{s(s+8)(s^2+6s+13)}$ <p>Sketch the root locus.</p>	16
13.	<p>a) Draw the Bode plot for a control system having transfer function</p> $G(s) H(s) = \frac{500(s+2)(s+20)}{s^3(s+100)(s+200)}$ <p>Determine gain margin and phase margin using the Bode plot.</p>	16
	OR	
	<p>b) Draw the polar plot for the following transfer function $G(s) = \frac{1}{s^2(1+s)(1+2s)(1+3s)}$</p> <p>Determine the gain margin and phase margin of the system.</p>	16
14.	<p>a) i) Calculate the eigenvalues and eigenvectors of the system whose matrix given</p> $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{bmatrix}$ <p>ii) Derive the transfer function corresponding to the following state model</p> $\dot{x} = \begin{bmatrix} 0 & 3 & 8 \\ -1 & -1 & 6 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$ $y = [0 \ 2 \ 1] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	8
	OR	8
	<p>b) i) Test the controllability and observability of the system described by</p> $\dot{x} = Ax + Bu, y = cx$ $A = \begin{bmatrix} 8 & 6 & 2 \\ 7 & 3 & 4 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 5 & 1 \end{bmatrix}$ <p>ii) Write the properties of the state transition matrix along with the proof.</p>	10
15.	<p>a) Consider a Type I unity feedback system with an open loop transfer function $G(s) = k/s(s+1)$. Design a suitable compensator with the following specifications $K_v = 10$, phase margin $= 45^\circ$.</p>	16
	OR	
	<p>b) i) Discuss in detail about Z-N (first and second method) tuning for PID controller.</p> <p>ii) What are compensators? What is a lag-lead compensator? Write the design procedure of the lag-lead compensator.</p>	6
		10

